圆的标准方程教学反思

时间:2023-10-07 21:15:09
圆的标准方程教学反思

圆的标准方程教学反思

作为一名优秀的教师,我们要有一流的课堂教学能力,通过教学反思可以有效提升自己的课堂经验,我们该怎么去写教学反思呢?以下是小编收集整理的圆的标准方程教学反思,仅供参考,希望能够帮助到大家。

圆的标准方程教学反思1

这节课主要是圆的标准方程的推导和一些简单的运用。它的研究方法坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。如果学生掌握得好,后面的学习“圆锥曲线与方程”会轻松许多。

标准方程的推导,先通过学生的切身体验,来发现决定圆的要素圆心和半径,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(3,5)为圆心,4为半径的圆的标准方程,再由特殊到一般,归纳出以(a,b)为圆心,r为半径的圆的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆。

例题教学的设计,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,比较符合学生的认知规律,这样学生接受起来比较容易。

课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标。

这节课几乎是按自己的教学设计顺利完成。在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思 ……此处隐藏1488个字……的兴趣。

圆的标准方程是求曲线方程的一个具体表现,但学生对圆的标准方程还是很陌生,难以将圆与圆的标准方程紧密联系起来。基于此,我想通过学生的切身体验;来发现圆的决定要素,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(2,3)为圆心,2为半径的圆的标准方程,再由特殊到一般,利用化归的思想归纳出以(a,b)为圆心,r为半径的圆心的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆,及时掌握。

例题教学的设计,还是紧密围绕圆的标准方程这一目标展开,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,层层入深,让学生的思维得以提高,比较符合学生的认知规律,这样学生接受起来比较容易。

课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标,题不多,很基础,主要是激发学生的兴趣和增强学习的自信。

整个教学设计,我的希望是以学生自主学习为主,所以很多问题都由学生独立思考或讨论完成,教师仅仅是一个引路人,让学生的主体地位得到充分体现,注重学生思维的形成过程,并将数学思想方法渗透到教学中。

总的来说,这节课几乎是按自己的教学设计在进行,而且顺利地完成了。应该说在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思想和方法,让学生思维得到提升。

当然,这节课还有很多不足的地方。比如:在变式练习时,未写出切线的方程,缺乏解题和板书的完整性;另外,后面的课堂练习也没有得到及时的反馈,这是较遗憾的。

《圆的标准方程教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式