《简单线性规划问题》教学反思
作为一名人民老师,我们的工作之一就是教学,写教学反思可以快速提升我们的教学能力,那么问题来了,教学反思应该怎么写?以下是小编为大家收集的《简单线性规划问题》教学反思,希望能够帮助到大家。
《简单线性规划问题》教学反思1本节课是学生对线性规划问题的图解法的复习,由于学生对代数问题等价转化为几何问题需要一个过程,因此在对教材的处理上有一定的难度.但是,通过前面的复习,学生已经理解:1、有序实数对(x,y)与平面直角坐标系中的点是一一对应的,因此二元一次方程的解(x,y)与直线上点的坐标之间是一一对应的;2、以二元一次不等式的解为坐标的点都在平面 直线的某一侧。而且,学生也已经掌握了用直线定界,用特殊点定域的方法画出平面区域。同时,由于在必修二中对直线方程的系统学习,学生也已经明确了Ax+By+C=0中A、B、C所表示的意义,有了将二元一次方程和二元一次不等式转化为直线和平面区域的 意识。
鉴于以上几点,在本节课中,除了要完成教育教学知识点的讲授外,在学生的能力和情感方面,我也设定了以下几个目标:
1、在应用图解法解题的过程中培养学生的观察能力、理解能力;在例题讲解过程中,培养学生的分析问题、解决问题的能力和探索能力。
2、让学生体验数学活动中充满着探索与创造,培养学生勤于思考、勇于探索的精神。同时,学会用运动的观点观察事物,了解事物之间从一般到特殊、从特殊 ……此处隐藏2331个字……中的x,y只能取平面区域内值,所以,只需要由z=2x+y变形为y=-2x+z就可以把不熟悉的求解转化为一个高一曾学习过的内容:y=-2x+z就是直线方程的斜截式,让学生画出y=-2x,y=-2x+1,y=-2x+2,三条学生,观察可以知道这是一系平行线,问题转化为求z=2x+y的最大值其实就是求直线y=-2x+z过平面区域某一点时在y轴上截距最大值。我先画出直线y=-2x,通过平移可以发现直线y=-2x+z过平面区域过某一点时在y轴上截距最大。求出最大值,问题得到解决。解答完成后,接着让学生阅读教材88页,从中找出一些相关的概念。再回到解答过程,从中提炼出解答这类问题的解答步骤。最后进行一道变式训练,改变不等式组,还是求z=2x+y的最大值。
本节课完成后,个人反思如下:
亮点:
1、教学设计比较适合学生的实际情况。
2、放手让学生多动手。
改进部分:
1、没有完成备课时确定的教学任务:教学设计中还有变式2:z改为z=6x+10y,变式3:z改为z=2x-y。小结中有解题方法:图解法(数形结合)
2、教学基本功不扎实:教态不够从容,不够自信;语言不精炼,很多重复的语句,个别字普通话不标准;板书不工整,字体不漂亮,字体偏大,板书规划不合理。
3、在讲相关的概念时,这里应该节省时间,在学生阅读教材时,先板演在黑板上,让学生找出相应的内容,高效省时。
4、在新课引入时,可以点明:在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题,解决这类问题就需要我们学习更多的知识,比如本节要学习的这内容就有关这方面的。再列举一个例子,这样可以立刻调动起学生的学习兴趣。